Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks

نویسندگان

چکیده

SUMMARY Frequency-domain wavefield solutions corresponding to the anisotropic acoustic wave equation can be used describe nature of Earth. To solve a frequency-domain equation, we often need invert impedance matrix. This results in dramatic increase computational cost as model size increases. It is even bigger challenge for media, where matrix far more complex. In addition, conventional finite-difference method produces numerical dispersion artefacts solving equations media. address these issues, use emerging paradigm physics-informed neural networks (PINNs) obtain an transversely isotropic (TI) media with vertical axis symmetry (VTI). PINNs utilize concept automatic differentiation calculate their partial derivatives, which are free artefacts. Thus, loss function train network provide functional VTI form equation. Instead predicting pressure wavefields directly, scattered avoid dealing point-source singularity. We spatial coordinates input data network, outputs real and imaginary parts auxiliary function. After training deep evaluate at any point space almost instantly using this trained without calculating inverse. demonstrate features on simple 2-D anomaly layered model. Additional tests modified 3-D Overthrust irregular topography further validate effectiveness proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Physics and the Wave Equation

Often in the history of physics a guiding line of mathematical thought has permeated the whole of the science for years, tying together apparently unrelated branches of the subject, contributing to the unity of physics, but at the same time stimulating philosophical thought, and focussing attention on a branch of mathematics, and leading to its development. The Newtonian mechanics was such a gu...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Solving Time Domain Helmholtz Wave Equation with Mod-fdm

In this work, we present a marching-on in degree finite difference method (MOD-FDM) to solve the time domain Helmholtz wave equation. This formulation includes electric and magnetic current densities that are expressed in terms of the incident field for scattering problems for an open region to implement a plane wave excitation. The unknown time domain functional variations for the electric fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Journal International

سال: 2021

ISSN: ['1365-246X', '0956-540X']

DOI: https://doi.org/10.1093/gji/ggab010